[1]
|
臧皓, 沈鹏, 王恩鹏, 等. 奎诺二甲基丙烯酸类衍生物的合成及生物活性[j]. 高等学校化学学报, 2018, 39(1).
|
[2]
|
尹天武, 李刚, 陈泽新. 一种奎诺二甲基丙烯酸及其制备方法和应用[p]. 中国, cn202010909901.8. 2024-04-10.
|
[3]
|
余曼丽, 蹇守卫, 穆松. 催化合成奎诺二甲基丙烯酸[j]. 中国建材科技, 2006, 15(6): 4.
|
[4]
|
曼尼希. 奎诺二甲基丙烯酸酯的合成方法及其应用领域[j]. 材料科学杂志, 2022, 32(5): 89-95.
|
[5]
|
卢沛琦. trolox在肌萎缩侧索硬化症中的神经保护作用及氧化应激、内质网应激与自噬的相关研究[d]: [博士学位论文]. 郑州: 郑州大学, 2015.
|
[6]
|
alberto, m.e., russo, n., grand, a. and galano, a. (2013) a physicochemical examination of the free radical scavenging activity of trolox: mechanism, kinetics and influence of the environment. physical chemistry chemical physics: pccp, 15, 4642-4650.
|
[7]
|
胡荣蓉, 丁世杰, 郭赟, 朱浩哲, 陈益春, 刘政, 丁希, 唐长波, 周光宏. trolox对猪肌肉干细胞增殖及分化的影响[j]. 中国农业科学, 2021, 54(24): 5290-5301.
|
[8]
|
张小旭. trolox调控间充质干细胞生物学特性的作用与机制研究[d]: [硕士学位论文]. 青岛: 青岛大学, 2023.
|
[9]
|
wang, w., yue, r., jin, z., he, l., shen, r., du, d., et al. (2020) efficiency comparison of apigenin-7-o-glucoside and trolox in antioxidative stress and anti-inflammatory properties. journal of pharmacy and pharmacology, 72, 1645-1656.
|
[10]
|
况秀平, 黄蓉萍, 韩绍聪, 张琼谊, 闫昌誉, 李维熙. orac法比较几种动物蛋白肽的抗氧化活性[j]. 广东化工, 2022, 49(7): 14-15 52.
|
[11]
|
usta, m., semerci, t., aydinhan, m., güder, a. and köseoğlu, m. (2023) biological variations of seven clinical chemistry analytes and trolox equivalent antioxidant capacity within salivary constituents. clinical laboratory, 69, no. 3.
|
[12]
|
shimizu, w., shoji, y., ohkubo, k., ito, h., nakanishi, i. and fukuhara, k. (2024) antioxidant activity of planar catechin conjugated with trolox. antioxidants, 13, article no. 1165.
|
[13]
|
liu, j., et al. (2010) trolox: a powerful natural antioxidant for health and longevity. journal of nutritional biochemistry, 21, 592-598.
|
[14]
|
yuan, y., et al. (2022) trolox mitigates cisplatin-induced nephrotoxicity via antioxidative and anti-inflammatory mechanisms. redox biology, 47, 102-141.
|
[15]
|
徐倩. trolox衍生物的合成及其体外抗氧化活性评价[d]: [硕士学位论文]. 延吉: 延边大学, 2020.
|
[16]
|
zhao, j., gao, s., zhou, l., rong, k., zuo, f., tang, w., et al. (2025) trolox derivatives: synthesis, structure-activity relationship and promote wound healing by regulating oxidative stress and inflammation. bioorganic chemistry, 154, article id: 108045.
|
[17]
|
shaaban, h.h., hozayen, w.g., khaliefa, a.k., el-kenawy, a.e., ali, t.m. and ahmed, o.m. (2022) diosmin and trolox have anti-arthritic, anti-inflammatory and antioxidant potencies in complete freund’s adjuvant-induced arthritic male wistar rats: roles of nf-κb, inos, nrf2 and mmps. antioxidants, 11, article no. 1721.
|
[18]
|
asha devi, s., davargaon, r.s. and subramanyam, m.v.v. (2021) qrt-pcr analysis of glut-4 and assessment of trolox as an effective antioxidant in diabetic cardiomyoblasts. in: guest, p.c., ed., physical exercise and natural and synthetic products in health and disease, springer us, 247-258.
|
[19]
|
atiq, a., lee, h.j., khan, a., kang, m.h., rehman, i.u., ahmad, r., et al. (2023) vitamin e analog trolox attenuates mptp-induced parkinson’s disease in mice, mitigating oxidative stress, neuroinflammation, and motor impairment. international journal of molecular sciences, 24, article no. 9942.
|
[20]
|
姚娜. 新型红细胞保存液对t2dm患者自体红细胞保护作用及机制研究[d]: [博士学位论文]. 银川: 宁夏医科大学, 2023.
|
[21]
|
sen, c.k., et al. (2006) trolox is more effective than vitamins c and e as an inhibitor of lipid peroxidation and beta amyloid aggregation. biochemical and biophysical research communications, 347, 603-609.
|
[22]
|
celik, h., akcay, g., budak savas, a., yesilyurt, f., ates, d., demirdogen, f., et al. (2024) trolox reduces neuroblastoma cell line-induced oxidative stress and inflammation. turkish neurosurgery, 34, 1117-1121.
|
[23]
|
upreti, s., sharma, p., sen, s., biswas, s. and ghosh, m.p. (2024) auxiliary effect of trolox on coenzyme q10 restricts angiogenesis and proliferation of retinoblastoma cells via the erk/akt pathway. scientific reports, 14, article no. 27309.
|
[24]
|
bonanni, r., cariati, i., rinaldi, a.m., marini, m., d’arcangelo, g., tarantino, u., et al. (2024) trolox and recombinant irisin as a potential strategy to prevent neuronal damage induced by random positioning machine exposure in differentiated ht22 cells. plos one, 19, e0300888.
|
[25]
|
tahir, m., kang, m.h., park, t.j., ali, j., choe, k., park, j.s., et al. (2024) multifaceted neuroprotective approach of trolox in alzheimer’s disease mouse model: targeting aβ pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. frontiers in cellular neuroscience, 18, article id: 1453038.
|
[26]
|
hegarty, k.j. and byrne, f.l. (2020) comment on “differential effects of mitovite, α-tocopherol and trolox on oxidative stress, mitochondrial function and inflammatory signalling pathways in endothelial cells cultured under conditions mimicking sepsis. antioxidants 2020, 9(3), 195”. antioxidants, 9, article no. 462.
|
[27]
|
kitasaka, s., yagi, m. and kikuchi, a. (2020) suppression of menthyl anthranilate (uv-a sunscreen)-sensitized singlet oxygen generation by trolox and α-tocopherol. photochemical & photobiological sciences, 19, 913-919.
|
[28]
|
intagliata, s., spadaro, a., lorenti, m., panico, a., siciliano, e.a., barbagallo, s., et al. (2020) in vitro antioxidant and anti-glycation activity of resveratrol and its novel triester with trolox. antioxidants, 10, article no. 12.
|
[29]
|
giordano, m.e., caricato, r. and lionetto, m.g. (2020) concentration dependence of the antioxidant and prooxidant activity of trolox in hela cells: involvement in the induction of apoptotic volume decrease. antioxidants, 9, article no. 1058.
|
[30]
|
souard, f., nicolle, e., cressend, d., valentin, a. and boumendjel, a. (2020) two in one: bifunctional derivatives of trolox acting as antimalarial and antioxidant agents. future medicinal chemistry, 12, 1845-1854.
|
[31]
|
gomes, k.c., lima, f.w.b., da silva aguiar, h.q., de araújo, s.s., de cordova, c.a.s. and de cordova, f.m. (2021) thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with trolox and dimethyl sulfoxide. naunyn-schmiedeberg’s archives of pharmacology, 394, 2289-2307.
|
[32]
|
elveny, m., akhmadeev, r., dinari, m., abdelbasset, w.k., bokov, d.o. and jafari, m.m.m. (2021) implementing pso‐elm model to approximate trolox equivalent antioxidant capacity as one of the most important biological properties of food. biomed research international, 2021, article id: 3805748.
|
[33]
|
arbneshi, t., frangu, a., frühbauerová, m., červenka, l., berisha, l., kalcher, k., et al. (2021) flow injection amperometric evaluation of trolox equivalent antioxidant capacity of chocolates with different cocoa content at a boron-doped diamond electrode. food technology and biotechnology, 59, 194-200.
|
[34]
|
coutts, c.w., baldwin, a.m., jebeli, m., jolin, g.e., mungai, r.w. and billiar, k.l. (2023) the role of apoptosis and oxidative stress in a cell spheroid model of calcific aortic valve disease. cells, 13, article no. 45.
|
[35]
|
flores, r., iqbal, s. and sikazwe, d. (2023) phenylacetyl-/trolox-amides: synthesis, sigma-1, hdac-6, and antioxidant activities. international journal of molecular sciences, 24, article no. 15295.
|
[36]
|
upreti, s., nag, t.c. and ghosh, m.p. (2024) trolox aids coenzyme q10 in neuroprotection against nmda induced damage via upregulation of vegf in rat model of glutamate excitotoxicity. experimental eye research, 238, article id: 109740.
|
[37]
|
bartosz, g., pieńkowska, n. and sadowska-bartosz, i. (2024) effect of selected antioxidants on the in vitro aging of human fibroblasts. international journal of molecular sciences, 25, article no. 1529.
|
[38]
|
romodin, l.a., nikitenko, o.v., bychkova, t.m., zrilova, y.a., rodionova, e.d. and bocharov, d.a. (2024) assessment of the acute toxicity of chlorophyllin and trolox for the possibility of studying their radioprotective properties. bulletin of experimental biology and medicine, 177, 44-46.
|
[39]
|
romodin, l.a., nikitenko, o.v., bychkova, t.m., zrilova, y.a., rodionova, e.d. and bocharov, d.a. (2024) comparative evaluation of the radioprotective properties of copper chlorophyllin, trolox, and indralin in an experiment on mice. bulletin of experimental biology and medicine, 177, 328-332.
|